Rabu, 17 September 2008


Tsunami (bahasa Jepang: 津波; secara harafiah berarti "ombak besar di pelabuhan") adalah sebuah ombak yang terjadi setelah sebuah gempa bumi, gempa laut, gunung berapi meletus, atau hantaman meteor di laut. Tenaga setiap tsunami adalah tetap terhadap fungsi ketinggian dan kelajuannya. Dengan itu, apabila gelombang menghampiri pantai, ketinggiannya meningkat sementara kelajuannya menurun. Gelombang tersebut bergerak pada kelajuan tinggi, hampir tidak dapat dirasakan efeknya oleh kapal laut (misalnya) saat melintasi di laut dalam, tetapi meningkat ketinggian hingga mencapai 30 meter atau lebih di daerah pantai. Tsunami bisa menyebabkan kerusakan erosi dan korban jiwa pada kawasan pesisir pantai dan kepulauan.

Dampak negatif yang diakibatkan tsunami adalah merusak apa saja yang dilaluinya. Bangunan, tumbuh-tumbuhan, dan mengakibatkan korban jiwa manusia serta menyebabkan genangan, pencemaran air asin lahan pertanian, tanah, dan air bersih.

Kebanyakan kota di sekitar Samudra Pasifik, terutama di Jepang juga di Hawaii, mempunyai sistem peringatan dan prosedur pengungsian sekiranya tsunami diramalkan akan terjadi. Tsunami akan diamati oleh pelbagai institusi seismologi sekeliling dunia dan perkembangannya dipantau melalui satelit.

Bukti menunjukkan tidak mustahil terjadinya megatsunami, yang menyebabkan beberapa pulau tenggelam.

Penyebab terjadinya tsunami

Skema terjadinya tsunami
Skema terjadinya tsunami

Tsunami dapat terjadi jika terjadi gangguan yang menyebabkan perpindahan sejumlah besar air, seperti letusan gunung api, gempa bumi, longsor maupun meteor yang jatuh ke bumi. Namun, 90% tsunami adalah akibat gempa bumi bawah laut. Dalam rekaman sejarah beberapa tsunami diakibatkan oleh gunung meletus, misalnya ketika meletusnya Gunung Krakatau.

Gerakan vertikal pada kerak bumi, dapat mengakibatkan dasar laut naik atau turun secara tiba-tiba, yang mengakibatkan gangguan kesetimbangan air yang berada di atasnya. Hal ini mengakibatkan terjadinya aliran energi air laut, yang ketika sampai di pantai menjadi gelombang besar yang mengakibatkan terjadinya tsunami.

Kecepatan gelombang tsunami tergantung pada kedalaman laut di mana gelombang terjadi, dimana kecepatannya bisa mencapai ratusan kilometer per jam. Bila tsunami mencapai pantai, kecepatannya akan menjadi kurang lebih 50 km/jam dan energinya sangat merusak daerah pantai yang dilaluinya. Di tengah laut tinggi gelombang tsunami hanya beberapa cm hingga beberapa meter, namun saat mencapai pantai tinggi gelombangnya bisa mencapai puluhan meter karena terjadi penumpukan masa air. Saat mencapai pantai tsunami akan merayap masuk daratan jauh dari garis pantai dengan jangkauan mencapai beberapa ratus meter bahkan bisa beberapa kilometer.

Gerakan vertikal ini dapat terjadi pada patahan bumi atau sesar. Gempa bumi juga banyak terjadi di daerah subduksi, dimana lempeng samudera menelusup ke bawah lempeng benua.

Tanah longsor yang terjadi di dasar laut serta runtuhan gunung api juga dapat mengakibatkan gangguan air laut yang dapat menghasilkan tsunami. Gempa yang menyebabkan gerakan tegak lurus lapisan bumi. Akibatnya, dasar laut naik-turun secara tiba-tiba sehingga keseimbangan air laut yang berada di atasnya terganggu. Demikian pula halnya dengan benda kosmis atau meteor yang jatuh dari atas. Jika ukuran meteor atau longsor ini cukup besar, dapat terjadi megatsunami yang tingginya mencapai ratusan meter.

Syarat terjadinya tsunami akibat gempa

  • Gempa bumi yang berpusat di tengah laut dan dangkal (0 - 30 km)
  • Gempa bumi dengan kekuatan sekurang-kurangnya 6,5 Skala Richter
  • Gempa bumi dengan pola sesar naik atau sesar turun

Sistem Peringatan Dini

!Artikel utama untuk bagian ini adalah: Sistem peringatan tsunami

Banyak kota-kota di sekitar Pasifik, terutama di Jepang dan juga Hawaii, mempunyai sistem peringatan tsunami dan prosedur evakuasi untuk menangani kejadian tsunami. Bencana tsunami dapat diprediksi oleh berbagai institusi seismologi di berbagai penjuru dunia dan proses terjadinya tsunami dapat dimonitor melalui perangkat yang ada di dasar atu permukaan laut yang terknoneksi dengansatelit.

Perekam tekanan di dasar laut bersama-sama denganperangkat yang mengapung di laut buoy, dapat digunakan untuk mendeteksi gelombang yang tidak dapat dilihat oleh pengamat manusia pada laut dalam. Sistem sederhana yang pertama kali digunakan untuk memberikan peringatan awal akan terjadinya tsunami pernah dicoba di Hawai pada tahun 1920-an. Kemudian, sistem yang lebih canggih dikembangkan lagi setelah terjadinya tsunami besar pada tanggal 1 April 1946 dan 23 Mei 1960. Amerika serikat membuat Pasific Tsunami Warning Center pada tahun 1949, dan menghubungkannya ke jaringan data dan peringatan internasional pada tahun 1965.

Salah satu sistem untuk menyediakan peringatan dini tsunami, CREST Project, dipasang di pantai Barat Amerika Serikat, Alaska, dan Hawai oleh USGS, NOAA, dan Pacific Northwest Seismograph Network, serta oleh tiga jaringan seismik universitas.

Hingga kini, ilmu tentang tsunami sudah cukup berkembang, meskipun proses terjadinya masih banyak yang belum diketahui dengan pasti. Episenter dari sebuah gempa bawah laut dan kemungkinan kejadian tsunami dapat cepat dihitung. Pemodelan tsunami yang baik telah berhasil memperkirakan seberapa besar tinggi gelombang tsunami di daerah sumber, kecepatan penjalarannya dan waktu sampai di pantai, berapa ketinggian tsunami di pantai dan seberapa jauh rendaman yang mungkin terjadi di daratan. Walaupun begitu, karena faktor alamiah, seperti kompleksitas topografi dan batimetri sekitar pantai dan adanya corak ragam tutupan lahan (baik tumbuhan, bangunan, dll), perkiraan waktu kedatangan tsunami, ketinggian dan jarak rendaman tsunami masih belum bisa dimodelkan secara akurat.


Sistem Peringatan Dini Tsunami di Indonesia

Indonesia saat ini sedang melakukan pekerjaan pembangunan Sistem Peringatan Dini Tsunami. Salah satu proyek yang dikerjakan adalah kerjasama dengan negara Jerman. Proyek ini bernama GITEWS (German Indonesia Tsunami Early Warning System). Ada 3 pilot area yang dipilih untuk pelaksanaan proyek ini yaitu Kota Padang, Jawa Tengah (Cilacap, Kebumen dan Bantul) serta Bali (Kab. Badung).

Pengembangang Sistem Peringatan Dini Tsunami ini melibatkan banyak pihak dan instansi-instansi pemerintah. Sebagai koordinator dari pihak Indonesia adalah Kementrian RISTEK (Riset dan Teknologi). Sedangkan instansi yang ditunjuk dan bertanggung jawab untuk mengeluarkan INFO GEMPA dan PERINGATAN TSUNAMI adalah BMG (Badan Meteorologi dan Geofisika)

Tujuan utama pembangunan Sistem Peringatan Dini Tsunami ini adalah untuk terciptanya sebuag sistem yang dapat menginformasikan serta memperingatkan masyarakat luas apabila terjadi suatu Gempa yang berpotensi Tsunami DALAM WAKTU SESINGKAT SINGKATNYA agar kerugian Nyawa dan Materi dapat dihindarkan semaksimal mungkin.


Cara Kerja

Sebuah Sistem Peringatan Dini Tsunami adalah merupakan rangkaian sistem kerja yang rumit dan melibatkan banyak pihak secara internasional, regional, nasional, daerah dan bermuara di Masyarakat.

Apabila terjadi suatu Gempa, maka kejadian tersebut dicatat oleh alat Seismograf (pencatat gempa). Dilautan, peralatan-peralatan elektronis juga mencatat serta merekam data-data dasar serta permukaan laut. Data-data tersebut kemudian dikirim melalui Satelit kekantor-kantor yang berwenang (untuk Indonesia bernama BMG). Selanjutnya BMG akan mengeluarkan INFO GEMPA yang disampaikan melalui peralatan teknis secara simultan. Cara penyampaian Info Gempa tersebut untuk saat ini adalah melalui SMS, Facsimile, Telepon, Email, RANET (Radio Internet), FM RDS (Radio yang mempunyai fasilitas RDS/Radio Data System) dan melalui Website BMG (www.bmg.go.id). Apabila gempa tersebut telah memenuhi syarat atau kondisi terjadinya Tsunami, maka BMG akan mengeluarkan peringatan Awas Tsunami. Artinya, gempa tersebut berpotensi untuk menimbulkan Tsunami. Untuk jenis Peringatan ini maka, pemerintah mengeluarkan isu evakuasi. Untuk kategori Awas Tsunami ini, Pemerintah Daerah mempunyai kewenangan untuk membunyikan SIRENE yang berarti Lakukan Evakuasi ! Peringatan Awas Tsunami ini juga akan secara otomotis ditampilkan melalui Mass Media Elektronik TV dan Radio.

Pengalaman serta banyak kejadian dilapangan membuktikan bahwa meskipun banyak peralatan canggih yang digunakan, tetapi alat yang paling efektif hingga saat ini untuk Sistem Peringatan Dini Tsunami adalah RADIO. Oleh sebab itu, kepada masyarakat yang tinggal didaerah rawan Tsunami diminta untuk selalu siaga mempersiapkan RADIO FM untuk mendengarkan berita peringatan dini Tsunami. Alat lainnya yang juga dikenal ampuh adalah Radio Komunikasi Antar Penduduk. Organisasi yang mengurusnya adalah RAPI (Radio Antar Penduduk Indonesia). Mengapa Radio ? jawabannya sederhana, karena ketika gempa seringkali mati lampu tidak ada listrik. Radio dapat beroperasi dengan baterai. Selain itu karena ukurannya kecil, dapat dibawa-bawa (mobile). Radius komunikasinyapun relatif cukup memadai.

Kesimpulan dan saran

Jika tsunami datang

  1. Jangan panik
  2. Jangan menjadikan gelombang tsunami sebagai tontonan. Apabila gelombang tsunami dapat dilihat, berarti kita berada di kawasan yang berbahaya
  3. Jika air laut surut dari batas normal, tsunami mungkin terjadi
  4. Bergeraklah dengan cepat ke tempat yang lebih tinggi ajaklah keluarga dan orang di sekitar turut serta. Tetaplah di tempat yang aman sampai air laut benar-benar surut. Jika Anda sedang berada di pinggir laut atau dekat sungai, segera berlari sekuat-kuatnya ke tempat yang lebih tinggi. Jika memungkinkan, berlarilah menuju bukit yang terdekat
  5. Jika situasi memungkinkan, pergilah ke tempat evakuasi yang sudah ditentukan
  6. Jika situasi tidak memungkinkan untuk melakukan tindakan seperti di atas, carilah bangunan bertingkat yang bertulang baja (ferroconcrete building), gunakan tangga darurat untuk sampai ke lantai yang paling atas (sedikitnya sampai ke lantai 3).
  7. Jika situasi memungkinkan, pakai jaket hujan dan pastikan tangan anda bebas dan tidak membawa apa-apa
  1. Ketika kembali ke rumah, jangan lupa memeriksa kerabat satu-persatu
  2. Jangan memasuki wilayah yang rusak, kecuali setelah dinyatakan aman
  3. Hindari instalasi listrik
  4. Datangi posko bencana, untuk mendapatkan informasi Jalinlah komunikasi dan kerja sama degan warga sekitar
  5. Bersiaplah untuk kembali ke kehidupan yang normal

Tsunami dalam sejarah


Gempa bumi adalah getaran yang terjadi permukaan bumi. Gempa bumi biasa disebabkan oleh pergerakan kerak bumi (lempeng bumi). Kata gempa bumi juga digunakan untuk menunjukkan daerah asal terjadinya kejadian gempa bumi tersebut. Bumi kita walaupun padat, selalu bergerak, dan gempa bumi terjadi apabila tekanan yang terjadi karena pergerakan itu sudah terlalu besar untuk dapat ditahan.

Gempa bumi tektonik disebabkan oleh perlepasan tenaga yang terjadi karena pergeseran lempengan plat tektonik seperti layaknya gelang karet ditarik dan dilepaskan dengan tiba-tiba. Tenaga yang dihasilkan oleh tekanan antara batuan dikenal sebagai kecacatan tektonik. Teori dari tektonik plate (plat tektonik) menjelaskan bahwa bumi terdiri dari beberapa lapisan batuan, sebagian besar area dari lapisan kerak itu akan hanyut dan mengapung di lapisan seperti salju. Lapisan tersebut begerak perlahan sehingga berpecah-pecah dan bertabrakan satu sama lainnya. Hal inilah yang menyebabkan terjadinya gempa tektonik.[2] Gempa bumi tektonik memang unik. Peta penyebarannya mengikuti pola dan aturan yang khusus dan menyempit, yakni mengikuti pola-pola pertemuan lempeng-lempeng tektonik yang menyusun kerak bumi. Dalam ilmu kebumian (geologi), kerangka teoretis tektonik lempeng merupakan postulat untuk menjelaskan fenomena gempa bumi tektonik yang melanda hampir seluruh kawasan, yang berdekatan dengan batas pertemuan lempeng tektonik. Contoh gempa tektonik ialah seperti yang terjadi di Yogyakarta, Indonesia pada Sabtu, 27 Mei 2006 dini hari, pukul 05.54 WIB,[3]

Gempa bumi gunung berapi

Gempa bumi gunung berapi terjadi berdekatan dengan gunung berapi dan mempunyai bentuk keretakan memanjang yang sama dengan gempa bumi tektonik. Gempa bumi gunung berapi disebabkan oleh pergerakan magma ke atas dalam gunung berapi, di mana geseran pada batu-batuan menghasilkan gempa bumi.

Ketika magma bergerak ke permukaan gunung berapi, ia bergerak dan memecahkan batu-batuan serta mengakibatkan getaran berkepanjangan yang dapat bertahan dari beberapa jam hingga beberapa hari.

Gempa bumi gunung berapi terjadi di kawasan yang berdekatan dengan gunung berapi, seperti Pergunungan Cascade di barat Laut Pasifik, Jepang, Dataran Tinggi Islandia, and titik merah gunung berapi seperti Hawaii.

Penyebab terjadinya gempa bumi

Kebanyakan gempa bumi disebabkan dari pelepasan energi yang dihasilkan oleh tekanan yang dilakukan oleh lempengan yang bergerak. Semakin lama tekanan itu kian membesar dan akhirnya mencapai pada keadaan dimana tekanan tersebut tidak dapat ditahan lagi oleh pinggiran lempengan. Pada saat itu lah gempa bumi akan terjadi.

Gempa bumi biasanya terjadi di perbatasan lempengan lempengan tersebut. Gempa bumi yang paling parah biasanya terjadi di perbatasan lempengan kompresional dan translasional. Gempa bumi fokus dalam kemungkinan besar terjadi karena materi lapisan litosfer yang terjepit kedalam mengalami transisi fase pada kedalaman lebih dari 600 km.

Beberapa gempa bumi lain juga dapat terjadi karena pergerakan magma di dalam gunung berapi. Gempa bumi seperti itu dapat menjadi gejala akan terjadinya letusan gunung berapi. Beberapa gempa bumi (jarang namun) juga terjadi karena menumpuknya massa air yang sangat besar di balik dam, seperti Dam Karibia di Zambia, Afrika. Sebagian lagi (jarang juga) juga dapat terjadi karena injeksi atau akstraksi cairan dari/ke dalam bumi (contoh. pada beberapa pembangkit listrik tenaga panas bumi dan di Rocky Mountain Arsenal. Terakhir, gempa juga dapat terjadi dari peledakan bahan peledak. Hal ini dapat membuat para ilmuwan memonitor tes rahasia senjata nuklir yang dilakukan pemerintah. Gempa bumi yang disebabkan oleh manusia seperti ini dinamakan juga seismisitas terinduksi

Alam


Alam ialah seluruh zat dan energi, khususnya dalam bentuk esensinya. Alam ialah mata pelajaran studi ilmiah. Dalam skala, "alam" termasuk segala sesuatu dari semesta pada subatom. Ini termasuk seluruh hal binatang, tanaman, dan mineral; seluruh sumber daya alam dan peristiwa (hurrikan, tornado, gempa bumi). Juga termasuk perilaku binatang hidup, dan proses yang dihubungkan dengan benda mati.

Perbedaan sering digambarkan antara "alami" dan "artifisial" (="buatan tangan"). Dapatkah perbedaan ini dibenarkan? Sebuah pendekatan ialah untuk mengeluarkan pikiran dari alam natural; lainnya ialah untuk tak hanya mengeluarkan pikiran, namun juga manusia dan pengaruh mereka. Dalam kasus lain, batas antara alami dan artifisial sulit digambarkan. Beberapa orang percaya lebih baik masalah dihindari dengan mengatakan bahwa segala sesuatu itu alami, namun berbuat sedikit untuk menjelaskan konsep "artifisial". Dalam tiap peristiwa, ambiguitas tentang perbedaan antara alami dan artifisial menggerakkan banyak seni, sastra dan filsafat.

Pendekatan lain ialah untuk membedakan proses alamiah dan proses artifisial (buatan tangan). Dalam sudut pandang ini, suatu proses dianggap terjadi pada behest manusia, atau tidak. Sebagai contoh, menekan sakelar lampu barangkali menerangi ruangan, atau barangkali matahari terbit menerangi ruangan. Dalam sudut pandang ini, matahari terbit akan disebut sebagai proses alamiah; keputusan manusia untuk menekan sakelar lampu akan disebut sebagai penerangan buatan, dalam perbandingan. Dalam sudut pandang ini, kecerdasan (seni atau sastra) terang merupakan akibat perbuatan manusia yang disengaja; lebih lanjut, perbuatan menetapkan kedudukan filosofi dapat juga merupakan tindakan yang disengaja (dan karenanya pada behest manusia), apakah atau tidak muatan filsafat ialah untuk menjadi tentang sains.

Konsep yang berkaitan

Istilah ilmu alam digunakan dalam berbagai macam jalan, terutama:

Istilah filsafat alam dulunya yang dinamai sebagai disiplin ilmu kini dikenal sebagai fisika.

Teologi alam mengangkang disiplin teologi dan filsafat keagamaan.

Dalam pendidikan dan area berkaitan, berkontras "alami/artifisial" dapat muncul sebagai " alam/pemeliharaan". Lihat juga: praeternatural, ketidakalamian dan supranatural.

Tata Surya


Hipotesis nebula Kant-Laplace. Pada tahap awal tata surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut nebula. Unsur gas sebagian besar berupa hidrogen. Karena gaya gravitasi yang dimilikinya, kabut itu menyusut dan berputar dengan arah tertentu. Akibatnya, suhu kabut memanas dan akhirnya menjadi bintang raksasa yang disebut matahari. Matahari raksasa terus menyusut dan perputarannya semakin cepat. Selanjutnya cincin-cincin gas dan es terlontar ke sekeliling matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam. Dengan cara yang sama, planet luar juga terbentuk.

Hipotesis Planetisimal

Hipotesis planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlain dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa tata surya kita terbentuk akibat adanya bintang lain yang hampir menabrak matahari.

Hipotesis Pasang Surut Bintang

Hipotesis pasang surut bintang pertama kali dikemukakan oleh James Jean dan Herold Jaffries pada tahun 1917. Hipotesis pasang surut bintang sangat mirip dengan hipotesis planetisimal. Namun perbedaannya terletak pada jumlah awalnya matahari.


Hipotesis Kondensasi

Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (1905-1973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa tata surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.

Hipotesis Bintang Kembar

Hipotesis bintang kembar awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Hipotesis mengemukakan bahwa dahulunya tata surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil.

Sejarah penemuan

Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.

Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.

Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa matahari adalah pusat alam semesta, bukan Bumi, yang digagas oleh Nicolaus Copernicus (1473-1543) sebelumnya. Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.

Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter.

Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya

Pada 1781, William Hechell (1738-1782) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada 1930.

Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian pada 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.

Para astronom kemudian menemukan sekitar 1.000 objek kecil lain di belakang Neptunus (disebut objek trans-Neptunus) yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Obyek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).

Penemuan 2003 EL61 cukup menghebohkan karena Obyek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, obyek ini juga memiliki satelit.

Daftar jarak planet

Daftar planet dan jarak rata-rata planet dengan matahari dalam tata surya adalah seperti berikut:

57,9 juta kilometer ke Merkurius
108,2 juta kilometer ke Venus
149,6 juta kilometer ke Bumi
227,9 juta kilometer ke Mars
778,3 juta kilometer ke Jupiter
1.427,0 juta kilometer ke Saturnus
2.871,0 juta kilometer ke Uranus
4.497,0 juta kilometer ke Neptunus

Terdapat juga lingkaran asteroid yang kebanyakan mengelilingi matahari di antara orbit Mars dan Jupiter.

Karena rotasinya terhadap sumbu masing-masing, garis khatulistiwa menjadi lingkar terpanjang yang terdapat di setiap planet dan bintang.

Selasa, 16 September 2008

Albert Einstein (14 Maret 187918 April 1955) adalah seorang ilmuwan fisika teoretis yang dipandang luas sebagai ilmuwan terbesar dalam abad ke-20. Dia mengemukakan teori relativitas dan juga banyak menyumbang bagi pengembangan mekanika kuantum, mekanika statistik, dan kosmologi. Dia dianugerahi Penghargaan Nobel dalam Fisika pada tahun 1921 untuk penjelasannya tentang efek fotoelektrik dan "pengabdiannya bagi Fisika Teoretis".

Setelah teori relativitas umum dirumuskan, Einstein menjadi terkenal ke seluruh dunia, pencapaian yang tidak biasa bagi seorang ilmuwan. Di masa tuanya, keterkenalannya melampaui ketenaran semua ilmuwan dalam sejarah, dan dalam budaya populer, kata Einstein dianggap bersinonim dengan kecerdasan atau bahkan jenius. Wajahnya merupakan salah satu yang paling dikenal di seluruh dunia.

Albert Einstein, Tokoh Abad Ini (Person of the Century)

Pada tahun 1999, Einstein dinamakan "Tokoh Abad Ini" oleh majalah Time. Kepopulerannya juga membuat nama "Einstein" digunakan secara luas dalam iklan dan barang dagangan lain, dan akhirnya "Albert Einstein" didaftarkan sebagai merk dagang.

Untuk menghargainya, sebuah satuan dalam fotokimia dinamai einstein, sebuah unsur kimia dinamai einsteinium, dan sebuah asteroid dinamai 2001 Einstein.

Rumus Einstein yang paling terkenal adalah (lihat E=mc²):

 E = mc^2 \!

Einstein dilahirkan di Ulm di Württemberg, Jerman; sekitar 100 km sebelah timur Stuttgart. Bapaknya bernama Hermann Einstein, seorang penjual ranjang bulu yang kemudian menjalani pekerjaan elektrokimia, dan ibunya bernama Pauline. Mereka menikah di Stuttgart-Bad Cannstatt. Keluarga mereka keturunan Yahudi; Albert disekolahkan di sekolah Katholik dan atas keinginan ibunya dia diberi pelajaran biola.

Pada umur lima tahun, ayahnya menunjukkan kompas kantung, dan Einstein menyadari bahwa sesuatu di ruang yang "kosong" ini beraksi terhadap jarum di kompas tersebut; dia kemudian menjelaskan pengalamannya ini sebagai salah satu saat yang paling menggugah dalam hidupnya. Meskipun dia membuat model dan alat mekanik sebagai hobi, dia dianggap sebagai pelajar yang lambat, kemungkinan disebabkan oleh dyslexia, sifat pemalu, atau karena struktur yang jarang dan tidak biasa pada otaknya (diteliti setelah kematiannya). Dia kemudian diberikan penghargaan untuk teori relativitasnya karena kelambatannya ini, dan berkata dengan berpikir dalam tentang ruang dan waktu dari anak-anak lainnya, dia mampu mengembangkan kepandaian yang lebih berkembang. Pendapat lainnya, berkembang belakangan ini, tentang perkembangan mentalnya adalah dia menderita Sindrom Asperger, sebuah kondisi yang berhubungan dengan autisme.

Einstein mulai belajar matematika pada umur dua belas tahun. Ada gosip bahwa dia gagal dalam matematika dalam jenjang pendidikannya, tetapi ini tidak benar; penggantian dalam penilaian membuat bingung pada tahun berikutnya. Dua pamannya membantu mengembangkan ketertarikannya terhadap dunia intelek pada masa akhir kanak-kanaknya dan awal remaja dengan memberikan usulan dan buku tentang sains dan matematika.

Pada tahun 1894, dikarenakan kegagalan bisnis elektrokimia ayahnya, Einstein pindah dari Munich ke Pavia, Italia (dekat kota Milan). Albert tetap tinggal untuk menyelesaikan sekolah, menyelesaikan satu semester sebelum bergabung kembali dengan keluarganya di Pavia.

Kegagalannya dalam seni liberal dalam tes masuk Eidgenössische Technische Hochschule (Institut Teknologi Swiss Federal, di Zurich) pada tahun berikutnya adalah sebuah langkah mundur dia oleh keluarganya dikirim ke Aarau, Swiss, untuk menyelesaikan sekolah menengahnya, di mana dia menerima diploma pada tahun 1896, Einstein beberapa kali mendaftar di Eidgenössische Technische Hochschule. Pada tahun berikutnya dia melepas kewarganegaraan Württemberg, dan menjadi tak bekewarganegaraan.

Pada 1898, Einstein menemui dan jatuh cinta kepada Mileva Marić, seorang Serbia yang merupakan teman kelasnya (juga teman Nikola Tesla). Pada tahun 1900, dia diberikan gelar untuk mengajar oleh Eidgenössische Technische Hochschule dan diterima sebagai warga negar Swiss pada 1901. Selama masa ini Einstein mendiskusikan ketertarikannya terhadap sains kepada teman-teman dekatnya, termasuk Mileva. Dia dan Mileva memiliki seorang putri bernama Lieserl, lahir dalam bulan Januari tahun 1902. Lieserl Einstein, pada waktu itu, dianggap tidak legal karena orang tuanya tidak menikah.



Kebenaran Terbuka

Saya seorang pria berusia 27 tahun dari keluarga bukan Kristen. Sejak di bangku SMP, saya mulai tertarik dengan pelajaran agama, khususnya mengenai perbandingan agama. Saya juga aktif dalam kegiatan keagamaan di SMP. Saya menjadi lebih tertarik dengan ilmu perbandingan agama setelah saya nonton film tentang Yesus di TVRI bulan Desember 1988, menjelang Natal.

Saya dahulu tidak percaya dengan semua ajaran Kristen, baik itu Allah Tritunggal, dosa warisan, dan ajaran-ajaran Kristen yang lain, khususnya tentang penyaliban Yesus, yang katanya disalib untuk menebus dosa manusia. Ada beberapa pertanyaan yang janggal mengenai penyaliban Yesus, yaitu:

  1. Benarkah Yesus disalib, sedangkan Ia sendiri adalah Tuhan? Bukanlah Tuhan itu maha perkasa? Mungkinkah Tuhan bisa mati di atas kayu salib?
  2. Menurut ajaran agama saya, yang disalibkan adalah Yudas, karena ia telah mengkhianati Yesus dan Allah telah menolong Yesus naik ke langit. Benarkah Yesus disalib?
Saya mencoba mencari jawaban atas pertanyaan-pertanyaan tersebut. Suatu kali, saya kembali menonton film Yesus yang disiarkan oleh RCTI pada perayaan Paskah. Setelah menonton film tersebut, saya mengirim surat ke sebuah yayasan penginjilan yang tertera di film tersebut dan mereka mengajak saya berdialog tentang ajaran-ajaran Kristen, baik itu tentang Allah Tritunggal, dosa warisan, dan penyaliban Yesus, kematian-Nya untuk menebus dosa kita. Roh Kudus bekerja dan memberikan saya pengertian tentang pertanyaan-pertanyaan saya.

Yesus bersabda, yang tercantum dalam injil Matius 20:17-19, yang berbunyi:
Ketika Yesus akan pergi ke Yerusalem, Ia memanggil kedua belas murid-Nya tersendiri dan berkata kepada mereka di tengah jalan:
"Sekarang kita pergi ke Yerusalem dan Anak Manusia akan diserahkan kepada imam-imam kepala dan ahli-ahli Taurat, dan mereka akan menjatuhi Dia hukuman mati.
Dan mereka akan menyerahkan Dia kepada bangsa-bangsa yang tidak mengenal Allah, supaya Ia diolok-olokkan, disesah dan disalibkan, dan pada hari ketiga Ia akan dibangkitkan."

(Baca pula Markus 8:31, Lukas 18:31-34, Yohanes 12:20-36)

Dari keempat Injil tersebut telah menjawab pertanyaan-pertanyaan saya: Mengapa Yesus tidak berdaya waktu disalib? Mengapa Yesus tidak melawan dan diam saja padahal Ia adalah Tuhan? Ini jawabnya: karena Tuhan Yesus, di empat Injil sudah memberitahukan bahwa diri-Nya akan menderita, dan penderitaan Yesus itu untuk menggenapi segala yang telah dinubuatkan Allah melalui para nabi sebagaimana tercantum dalam kitab-kitab Perjanjian Lama.

Jika Tuhan melarikan diri, atau dengan kata lain ditolong oleh Allah naik ke langit dan Allah mengubah wajah Yudas menjadi Yesus, sehingga yang ditangkap dan disalib adalah Yudas, itu sama saja dengan Tuhan yang merusak rencana-Nya sendiri, karena Allah telah menubuatkan melalui para nabi, bahwa Anak Manusia akan menderita dan serahkan kepada orang-orang yang tidak mengenal Allah.
Ini sama dengan orang yang telah membuat sebuah rencana matang, lalu di kemudian hari ia merusaknya sendiri. Allah adalah Allah yang membuat rencana dan rencana-Nya tidak akan dapat digagalkan oleh siapapun dan tidak mungkin diubah oleh-Nya, karena Ia maha yahu. Jika Allah yang telah membuat rencana, dan rencana-Nya kemudian diubah oleh-Nya oleh karena mungkin ada yang kurang baik dari rencana yang telah Ia buat, maka itu menunjukkan bahwa Allah yang demikian adalah Allah yang kurang maha tahu.

Lalu rencana matang apakah dengan kematian Yesus di atas kayu salib? Rencana matang itu adalah:
Kematian Tuhan Yesus di atas kayu salib untuk menebus dosa kita, sebagaimana diterangkan dalam surat Roma 5:
Akan tetapi Allah menunjukkan kasih-Nya kepada kita, oleh karena Kristus telah mati untuk kita, ketika kita masih berdosa.
Juga tertera dalam 1 Korintus 15:3-6. Ini artinya, kematian Tuhan Yesus di atas kayu salib adalah untuk menghapus dan menebus dosa-dosa kita. Ia adalah Tuhan, Juruselamat kita yang perkasa.

Dalam Lukas 18:31-34:
Yesus memanggil kedua belas murid-Nya, lalu berkata kepada mereka: "Sekarang kita pergi ke Yerusalem dan segala sesuatu yang ditulis oleh para nabi mengenai Anak Manusia akan digenapi.
Sebab Ia akan diserahkan kepada bangsa-bangsa yang tidak mengenal Allah, diolok-olokkan, dihina dan diludahi,
dan mereka menyesah dan membunuh Dia, dan pada hari ketiga Ia akan bangkit."
Akan tetapi mereka sama sekali tidak mengerti semuanya itu; arti perkataan itu tersembunyi bagi mereka dan mereka tidak tahu apa yang dimaksudkan.


Oleh karena pekerjaan Roh Kudus, maka saya boleh mengerti mengapa Tuhan Yesus harus mati di kayu salib. Itu bukan berarti bahwa Ia tidak mampu menolong diri-Nya sendiri, tetapi setiap dosa harus ada penebusan. Karena Allah adalah Allah Yang Maha Suci, sehingga tidak ada kemungkinan manusia yang sudah jatuh dalam dosa dapat menghampiri Allah. Kita dapat datang menghampiri Allah yang Maha Suci, apabila diri kita juga suci. Dan yang menyucikan kita adalah darah Yesus. Darah melambangkan hidup, oleh karena itu dalam Perjanjian Lama ada darah binatang yang dialirkan untuk berdamai dengan Allah dan penggenapannya adalah Darah Anak Allah sendiri, yaitu Yesus yang dialirkan untuk menebus dosa kita.

Dalam Matius 27:1-5, dijelaskan mengenai penyesalan Yudas yang telah menjual Yesus, bahwa ia mati bunuh diri. Ia menyesal, tetapi tidak bertobat. Sedangkan Petrus, yang telah menyangkal Yesus, menyesal dan bertobat. Kematian Yudas pun tertera dalam surat Kisah Para Rasul 1:18.

Oleh karena pengertian yang telah diberikan, maka saya bertobat dan menerima Yesus yang adalah Tuhan, Juruselamat, dan Raja.

Ada satu keinginan saya setelah bertobat, bahwa saya ingin memberitakan kabar baik tentang Tuhan Yesus yang telah mati untuk menebus dosa dan telah bangkit dari kematian dan menang atas dosa. Saya terus mendalami akan iman Kristen dengan pemahaman teologia yang benar.

Mengenai kesaksian ini yang dititikberatkan pada kematian Tuhan Yesus di atas kayu salib adalah semata-mata untuk membuat kita paham mengenai rahasia yang telah Allah berikan kepada kita. Sebenarnya saya juga ingin mengulas tentang Allah Tritunggal, dosa warisan, namun biarlah tentang keduanya itu akan saya buat dalam bentuk buku.

Semua kesaksian mengenai iman saya kepada Kristus ini saya tulis bukan karena paksaan, tekanan, ataupun iming-iming, tetapi oleh karena kemurahan Tuhan yang rela memberikannya kepada saya ketika pencarian kebenaran selama 12 tahun.

Semoga kesaksian ini boleh menjadi berkat dan sebelum mengakhirinya saya ingin mengutip surat Roma 10:9:
Sebab jika kamu mengaku dengan mulutmu, bahwa Yesus adalah Tuhan, dan percaya dalam hatimu, bahwa Allah telah membangkitkan Dia dari antara orang mati, maka kamu akan diselamatkan

Tuhan Memberkati. AMIN

Senin, 01 September 2008


Create your own at MyNiceSpace.com

I'm WitHouT My WiNgs

Emo Myspace Comments
MyNiceSpace.com

Hey...wHat u lo0k? I'm s0 co0l...?????

Emo Myspace Comments
MyNiceSpace.com

I'm n tHe QueEn of My heArt...Bunga

Emo Myspace Comments
MyNiceSpace.com

I'm tHe DaRk Night Prince

Emo Myspace Comments
MyNiceSpace.com

The BlAck n wHiTe PrinCess here with Me

Emo Myspace Comments
MyNiceSpace.com

U r0cK!!!!!!!!!!!!!!!!!!

Emo Myspace Comments
MyNiceSpace.com

Komputer


Komputer adalah alat yang dipakai untuk mengolah data menurut prosedur yang telah dirumuskan. Kata computer semula dipergunakan untuk menggambarkan orang yang perkerjaannya melakukan perhitungan aritmatika, dengan atau tanpa alat bantu, tetapi arti kata ini kemudian dipindahkan kepada mesin itu sendiri. Asal mulanya, pengolahan informasi hampir eksklusif berhubungan dengan masalah aritmatika, tetapi komputer modern dipakai untuk banyak tugas yang tidak berhubungan dengan matematika.
Dalam definisi seperti itu terdapat alat seperti slide rule, jenis kalkulator mekanik mulai dari abakus dan seterusnya, sampai semua komputer elektronik yang kontemporer. Istilah lebih baik yang cocok untuk arti luas seperti "komputer" adalah "yang memproses informasi" atau "sistem pengolah informasi."


Kata "Komputer"
Selama bertahun-tahun sudah ada beberapa arti yang agak berbeda pada kata 'komputer', dan beberapa kata berbeda untuk hal kami sekarang biasanya disebut komputer.
Misalnya "computer" secara umum pernah dipergunakan untuk bermaksud orang memperkerjakan untuk melakukan perhitungan aritmatika, dengan atau tanpa mesin membantu. Menurut Barnhart Concise Dictionary of Etymology, kata tersebut digunakan dalam bahasa Inggris pada tahun 1646 sebagai kata bagi "orang yang menghitung" dan lalu menjelang 1897 juga untuk "alat hitung mekanis". Selama Perang Dunia II kata tersebut menunjuk kepada para pekerja wanita AS dan Inggris yang pekerjaannya memperhitungkan jalan artileri perang besar dengan mesin seperti itu.
Charles Babbage mendesain salah satu mesin menghitung pertama disebut Mesin Analitikal, tetapi karena masalah teknologi tidak dibuat seumur hidupnya. Berbagai alat mesin yang sederhana seperti slide rule baik juga sudah menyebut komputer. Di beberapa kasus mereka diserahkan ke sebagai "komputer analog", sewaktu mereka melambangkan nomor oleh continuous kuantitas-kuantitas fisik daripada di samping digit biner yang berlainan. Apa sekarang menyebut "komputer" saja secara umum pernah menyebut "komputer digital" untuk membedakan mereka dari alat lain ini (yang masih dipakai di bidang analog pengolahan tanda, misalnya).
In yang memikirkan kata lain untuk komputer, itu ialah harga mengamati bahwa di bahasa lain kata yang dipilih selalu tidak mempunyai arti harfiah sama sebagai kata Bahasa Inggris. Dalam Bahasa Perancis misalnya, kata ialah "ordinateur", yang berarti kira-kira "organisator", atau "memisahkan mesin". Pada bahasa Spanyol digunakan kata "ordenador", dengan arti sama, walaupun di beberapa negara mereka menggunakan anglicism computadora. Dalam Bahasa Italia, komputer ialah "calcolatore", kalkulator, menekankannya computational menggunakan di balik yang logis seperti penyortiran. Dalam Bahasa Swedia, komputer dipanggil "dator" dari "data". Atau paling tidak pada tahun 1950-an, mereka disebut "matematikmaskin" (mesin matematika). Dalam Bahasa Tionghoa, komputer dipanggil "dien nau" atau suatu "otak listrik". Dalam Bahasa Inggris, kata lain dan frase sudah bekas, seperti "mesin pengolahan data".



Pada sekitar 20 tahun terakhir, banyak alat rumah tangga, khususnya termasuk panel dari permainan video tetapi juga mencakup telepon genggam, perekam kaset video, PDA dan banyak sekali dalam rumahtangga, industri, otomotif, dan alat elektronik lain, semua berisi sirkuit elektronik yang seperti komputer yang memenuhi syarat Turing-lengkap di atas (dengan catatan bahwa program dari alat ini seringkali dibuat secara langsung di dalam chip ROM yang akan perlu diganti untuk mengubah program mesin). Komputer maksud khusus lainnya secara umum dikenal sebagai "mikrokontroler" atau "komputer benam" (embedded computer). Oleh karena itu, banyak yang membatasi definisi komputer kepada alat yang maksud pokoknya adalah pengolahan informasi, daripada menjadi bagian dari sistem yang lebih besar seperti telepon, oven mikrowave, atau pesawat terbang, dan bisa diubah untuk berbagai maksud oleh pemakai tanpa modifikasi fisik. Komputer kerangka utama, minikomputer, dan komputer pribadi (PC) adalah macam utama komputer yang mendapat definisi ini.


Saat teknologi yang dipakai pada komputer digital sudah berganti secara dramatis sejak komputer pertama pada tahun 1940-an (lihat Sejarah perangkat keras menghitung untuk lebih banyak detail), komputer kebanyakan masih menggunakan arsitektur Von Neumann, yang diusulkan di awal 1940-an oleh John von Neumann.
Arsitektur Von Neumann menggambarkan komputer dengan empat bagian utama: Unit Aritmatika dan Logis (ALU), unit kontrol, memori, dan alat masukan dan hasil (secara kolektif dinamakan I/O). Bagian ini dihubungkan oleh berkas kawat, "bus"


Pemrosesan
Unit Pemproses Pusat atau CPU ( central processing unit) berperanan untuk memproses arahan, melaksanakan pengiraan dan menguruskan laluan informasi menerusi system komputer. Unit atau peranti pemprosesan juga akan berkomunikasi dengan peranti input , output dan storan bagi melaksanakan arahan-arahan berkaitan.
Berkas:CPU with pins.jpg
Contoh sebuah CPU dalam kemasan Ball Grid Array (BGA) ditampilkan terbalik dengan menunjukan kaki-kakinya
Dalam arsitektur von Neumann yang asli, ia menjelaskan sebuah Unit Aritmatika dan Logika, dan sebuah Unit Kontrol. Dalam komputer-komputer modern, kedua unit ini terletak dalam satu sirkuit terpadu (IC - Integrated Circuit), yang biasanya disebut CPU (Central Processing Unit).
Unit Aritmatika dan Logika, atau Arithmetic Logic Unit (ALU), adalah alat yang melakukan pelaksanaan dasar seperti pelaksanaan aritmatika (tambahan, pengurangan, dan semacamnya), pelaksanaan logis (AND, OR, NOT), dan pelaksanaan perbandingan (misalnya, membandingkan isi sebanyak dua slot untuk kesetaraan). Pada unit inilah dilakukan "kerja" yang nyata.
Unit kontrol menyimpan perintah sekarang yang dilakukan oleh komputer, memerintahkan ALU untuk melaksanaan dan mendapat kembali informasi (dari memori) yang diperlukan untuk melaksanakan perintah itu, dan memindahkan kembali hasil ke lokasi memori yang sesuai. Sekali yang terjadi, unit kontrol pergi ke perintah berikutnya (biasanya ditempatkan di slot berikutnya, kecuali kalau perintah itu adalah perintah lompatan yang memberitahukan kepada komputer bahwa perintah berikutnya ditempatkan di lokasi lain).


Perintah yang dibicarakan di atas tidak adalah perintah kaya bahasa manusiawi. Komputer hanya mempunyai dalam jumlah terbatas perintah sederhana yang dirumuskan dengan baik. Perintah biasa yang dipahami kebanyakan komputer ialah "menyalin isi sel 123, dan tempat tiruan di sel 456", "menambahkan isi sel 666 ke sel 042, dan tempat akibat di sel 013", dan "jika isi sel 999 adalah 0, perintah berikutnya anda di sel 345".
Instruksi diwakili dalam komputer sebagai nomor - kode untuk "menyalin" mungkin menjadi 001, misalnya. Suatu himpunan perintah khusus yang didukung oleh komputer tertentu diketahui sebagai bahasa mesin komputer. Dalam prakteknya, orang biasanya tidak menulis perintah untuk komputer secara langsung di bahasa mesin tetapi memakai bahasa pemrograman "tingkat tinggi" yang kemudian diterjemahkan ke dalam bahasa mesin secara otomatis oleh program komputer khusus (interpreter dan kompiler). Beberapa bahasa pemrograman berhubungan erat dengan bahasa mesin, seperti assembler (bahasa tingkat rendah); di sisi lain, bahasa seperti Prolog didasarkan pada prinsip abstrak yang jauh dari detail pelaksanaan sebenarnya oleh mesin (bahasa tingkat tinggi)



Bola basket adalah olahraga bola berkelompok yang terdiri atas dua tim beranggotakan masing-masing lima orang yang saling bertanding mencetak poin dengan memasukkan bola ke dalam keranjang lawan. Bola basket sangat cocok untuk ditonton karena biasa dimainkan di ruang olahraga tertutup dan hanya memerlukan lapangan yang relatif kecil. Selain itu, bola basket mudah dipelajari karena bentuk bolanya yang besar, sehingga tidak menyulitkan pemain ketika memantulkan atau melempar bola tersebut.
Bola basket adalah salah satu olahraga yang paling digemari oleh penduduk Amerika Serikat dan penduduk di belahan bumi lainnya, antara lain di Amerika Selatan, Eropa Selatan, Lithuania, dan juga di Indonesia.

Sejarah perkembangan
Basket dianggap sebagai olahraga unik karena diciptakan secara tidak sengaja oleh seorang pastor. Pada tahun 1891, Dr. James Naismith, seorang pastor asal Kanada yang mengajar di sebuah fakultas untuk para mahasiswa profesional di YMCA (sebuah wadah pemuda umat Kristen) di Springfield, Massachusetts, harus membuat suatu permainan di ruang tertutup untuk mengisi waktu para siswa pada masa liburan musim dingin di New England.Terinspirasi dari permainan yang pernah ia mainkan saat kecil di Ontario,Naismith menciptakan permainan yang sekarang dikenal sebagai bola basket pada 15 Desember 1891.
Menurut cerita, setelah menolak beberapa gagasan karena dianggap terlalu keras dan kurang cocok untuk dimainkan di gelanggang-gelanggang tertutup, dia lalu menulis beberapa peraturan dasar, menempelkan sebuah keranjang di dinding ruang gelanggang olahraga, dan meminta para siswanya untuk mulai memainkan permainan ciptaannya itu.
Pertandingan resmi bola basket yang pertama, diselenggarakan pada tanggal 20 Januari 1892 di tempat kerja Dr. James Naismith. "Basket ball" (sebutan bagi olahraga ini dalam bahasa Inggris), adalah sebutan yang digagas oleh salah seorang muridnya. Olahraga ini pun menjadi segera terkenal di seantero Amerika Serikat. Penggemar fanatiknya ditempatkan di seluruh cabang YMCA di Amerika Serikat. Pertandingan demi pertandingan pun segera dilaksanakan di kota-kota di seluruh negara bagian Amerika Serikat.
Pada awalnya,setiap tim berjumlah sembilan orang dan tidak ada dribble,sehingga bola hanya dapat berpindah melalui pass (lemparan). Sejarah peraturan permainan basket diawali dari 13 aturan dasar yang ditulis sendiri oleh James Naismith. Aturan dasar tersebut adalah sebagai berikut.
Bola dapat dilemparkan ke segala arah dengan menggunakan salah satu atau kedua tangan.
Bola dapat dipukul ke segala arah dengan menggunakan salah satu atau kedua tangan, tetapi tidak boleh dipukul menggunakan kepalan tangan (meninju).
Pemain tidak diperbolehkan berlari sambil memegang bola. Pemain harus melemparkan bola tersebut dari titik tempat menerima bola, tetapi diperbolehkan apabila pemain tersebut berlari pada kecepatan biasa.
Bola harus dipegang di dalam atau diantara telapak tangan. Lengan atau anggota tubuh lainnya tidak diperbolehkan memegang bola.
Pemain tidak diperbolehkan menyeruduk, menahan, mendorong, memukul, atau menjegal pemain lawan dengan cara bagaimanapun. Pelanggaran pertama terhadap peraturan ini akan dihitung sebagai kesalahan, pelanggaran kedua akan diberi sanksi berupa pendiskualifikasian pemain pelanggar hingga keranjang timnya dimasuki oleh bola lawan, dan apabila pelanggaran tersebut dilakukan dengan tujuan untuk mencederai lawan, maka pemain pelanggar akan dikenai hukuman tidak boleh ikut bermain sepanjang pertandingan. Pada masa ini, pergantian pemain tidak diperbolehkan.
Sebuah kesalahan dibuat pemain apabila memukul bola dengan kepalan tangan (meninju), melakukan pelanggaran terhadap aturan 3 dan 4, serta melanggar hal-hal yang disebutkan pada aturan 5.
Apabila salah satu pihak melakukan tiga kesalahan berturut-turut, maka kesalahan itu akan dihitung sebagai gol untuk lawannya (berturut-turut berarti tanpa adanya pelanggaran balik oleh lawan).
Gol terjadi apabila bola yang dilemparkan atau dipukul dari lapangan masuk ke dalam keranjang, dalam hal ini pemain yang menjaga keranjang tidak menyentuh atau mengganggu gol tersebut. Apabila bola terhenti di pinggir keranjang atau pemain lawan menggerakkan keranjang, maka hal tersebut tidak akan dihitung sebagai sebuah gol.
Apabila bola keluar lapangan pertandingan, bola akan dilemparkan kembali ke dalam dan dimainkan oleh pemain pertama yang menyentuhnya. Apabila terjadi perbedaan pendapat tentang kepemilikan bola, maka wasitlah yang akan melemparkannya ke dalam lapangan. Pelempar bola diberi waktu 5 detik untuk melemparkan bola dalam genggamannya. Apabila ia memegang lebih lama dari waktu tersebut, maka kepemilikan bola akan berpindah. Apabila salah satu pihak melakukan hal yang dapat menunda pertandingan, maka wasit dapat memberi mereka sebuah peringatan pelanggaran.
Wasit berhak untuk memperhatikan permainan para pemain dan mencatat jumlah pelanggaran dan memberi tahu wasit pembantu apabila terjadi pelanggaran berturut-turut. Wasit memiliki hak penuh untuk mendiskualifikasi pemain yang melakukan pelanggaran sesuai dengan yang tercantum dalam aturan 5.
Wasit pembantu memperhatikan bola dan mengambil keputusan apabila bola dianggap telah keluar lapangan, pergantian kepemilikan bola, serta menghitung waktu. Wasit pembantu berhak menentukan sah tidaknya suatu gol dan menghitung jumlah gol yang terjadi.
Waktu pertandingan adalah 4 quarter masing-masing 10 menit
Pihak yang berhasil memasukkan gol terbanyak akan dinyatakan sebagai pemenang.
Pada Agustus 1936, saat menghadiri Olimpiade Berlin 1936, ia dinamakan sebagai Presiden Kehormatan Federasi Bola Basket Internasional. Terlahir sebagai warga Kanada, ia menjadi warga negara Amerika Serikat pada 4 Mei 1925.
Naismith meninggal dunia 28 November 1939, kurang dari enam bulan setelah menikah untuk kedua kalinya.

Perkembangan
Permainan basket sudah sangat berkembang dan digemari sejak pertama kali diperkenalkan oleh James Naismith. Salah satu perkembangannya adalah diciptakannya gerakan slam dunk atau menombok, yaitu gerakan untuk memasukkan dan melesakan bola basket langsung ke dalam keranjang yang bisa dilakukan dengan gerakan akrobatik yang berkekuatan luar biasa.

Tata Surya


Tata surya (bahasa Inggris: solar system) terdiri dari sebuah bintang yang disebut matahari dan semua objek yang yang mengelilinginya. Objek-objek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, meteor, asteroid, komet, planet-planet kerdil/katai, dan satelit-satelit alami.

Tata surya dipercaya terbentuk semenjak 4,6 milyar tahun yang lalu dan merupakan hasil penggumpalan gas dan debu di angkasa yang membentuk matahari dan kemudian planet-planet yang mengelilinginya.

Tata surya terletak di tepi galaksi Bima Sakti dengan jarak sekitar 2,6 x 1017 km dari pusat galaksi, atau sekitar 25.000 hingga 28.000 tahun cahaya dari pusat galaksi. Tata surya mengelilingi pusat galaksi Bima Sakti dengan kecepatan 220 km/detik, dan dibutuhkan waktu 225–250 juta tahun untuk untuk sekali mengelilingi pusat galaksi. Dengan umur tata surya yang sekitar 4,6 milyar tahun, berarti tata surya kita telah mengelilingi pusat galaksi sebanyak 20–25 kali dari semenjak terbentuk.

Tata surya dikekalkan oleh pengaruh gaya gravitasi matahari dan sistem yang setara tata surya, yang mempunyai garis pusat setahun kecepatan cahaya, ditandai adanya taburan komet yang disebut awan Oort. Selain itu juga terdapat awan Oort berbentuk piring di bagian dalam tata surya yang dikenali sebagai awan Oort dalam.

Disebabkan oleh orbit planet yang membujur, jarak dan kedudukan planet berbanding kedudukan matahari berubah mengikut kedudukan planet di orbit.

Sejarah Awal Teori Pembentukan Tata Surya
Sebuah teori lahir dari keingintahuan akan suatu kejadian atau keadaan. Tidak mudah untuk mempercayai sebuah teori baru, apalagi jika teori tersebut lahir ditengah kondisi masyarakat yang memiliki kepercayaan yang berbeda. Tapi itulah kenyataan yang harus dihadapi oleh para ilmuwan di awal-awal penemuan mereka.

Hal utama yang dihadapi untuk mengerti lebih jauh lagi tentang Tata Surya adalah bagaimana Tata Surya itu terbentuk, bagaimana objek-objek didalamnya bergerak dan berinteraksi serta gaya yang bekerja mengatur semua gerakan tersebut. Jauh sebelum Masehi, berbagai penelitian, pengamatan dan perhitungan telah dilakukan untuk mengetahui semua rahasia dibalik Tata Surya.

Pengamatan pertama kali dilakukan oleh bangsa China dan Asia Tengah, khususnya dalam pengaruhnya pada navigasi dan pertanian. Dari para pengamat Yunani ditemukan bahwa selain objek-objek yang terlihat tetap di langit, tampak juga objek-objek yang mengembara dan dinamakan planet. Orang-orang Yunani saat itu menyadari bahwa Matahari, Bumi, dan Planet merupakan bagian dari sistem yang berbeda. Awalnya mereka memperkirakan Bumi dan Matahari berbentuk pipih tapi Phytagoras (572-492 BC) menyatakan semua benda langit berbentuk bola (bundar).

Sampai dengan tahun 1960, perkembangan teori pembentukan Tata Surya bisa dibagi dalam dua kelompok besar yakni masa sebelum Newton dan masa sesudah Newton.

Selasa, 26 Agustus 2008


Nama lengkap Cristiano Ronaldo dos Santos Aveiro

Tanggal lahir 5 Februari 1985 (umur 23)

Tempat lahir Funchal, Madeira, Portugal

Tinggi 1.84 m (6 ft 0 in)

Informasi klub Klub sekarang Manchester United F.C.

Nomor punggung 7



Klub profesional* 2001–20032003– Sporting CPManchester United 025 0(3)148 (52)

Tim nasional** 2003– Portugal 051 (20)

Cristiano Ronaldo dos Santos Aveiro (lahir 5 Februari 1985 di Funchal) adalah seorang pemain sepak bola asal Portugal. Ia saat ini membela klub Manchester United, bermain sebagai sayap kiri. Ia mulai dipanggil ke tim nasional sepak bola Portugal sejak tahun 2003.
Ronaldo Lahir di Madeira, Portugal, anak dari Maria Dolores dos Santos Aveiro dan José Dinis Aveiro. Dia memiliki kakak laki-laki bernama Hugo, dan dua kakak perempuan, Elma dan Liliana Cátia. Liliana Bekerja sebagai penyanyi dengan nama panggung "Ronalda" di Portugal.[rujukan?] Nama kedua yang diberikan kepada Cristiano ("Ronaldo") relatif langka di Portugal.[rujukan?]
Ronaldo adalah pemain sepak bola yang dapat bermain dengan kedua kakinya[rujukan?], yang membuat dia dapat bermain di mana saja: kanan, kiri atau melalui tengah. Ini mengakibatkan Ronaldo dan rekannya sesama pemain sepak bola di Manchester United Ryan Giggs dapat saling bertukar posisi.
Ronaldo memiliki kemampuan teknik yang hebat.[rujukan?] Di samping gerakan multi step-over, dia juga mengembangkan banyak kemampuan lainnya, membuat dia sangat lincah dan sebagai pemain sayap yang tidak dapat diprediksikan gerakannya.

Cristiano sejak kecil merupakan kesayangan keluarganya, dia selalu mendapat dukungan dari keluarganya dalam segala hal.dia dikenal anak yang selalu ingin menang. Di sekolahnya dia menggemari sepak bola, dia selalu punya akal agar dapat bermain bola. Jika dia tidak menemukan bola, maka ia akan membuat bola dari gulungan kaos kaki teman-temannya.